글로버메뉴 바로가기 본문 바로가기 하단메뉴 바로가기

논문검색은 역시 페이퍼서치

> 한국통계학회 > 응용통계연구 > 29권 6호

뇌기능 연결성 모델링을 위한 통계적 방법

Statistical methods for modelling functional neuro-connectivity

김성호 ( Sung-ho Kim ) , 박창현 ( Chang-hyun Park )

- 발행기관 : 한국통계학회

- 발행년도 : 2016

- 간행물 : 응용통계연구, 29권 6호

- 페이지 : pp.1129-1145 ( 총 17 페이지 )


학술발표대회집, 워크숍 자료집 중 1,2 페이지 논문은 ‘요약’만 제공되는 경우가 있으니,

구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

5,200
논문제목
초록(한국어)
뇌기능 연결성 문제는 뇌의 신경역학적 현상과 밀접한 관련이 있다는 의미에서 뇌과학에서 주요 연구주제이다. 본 논문에서는 기능적 자기공명영상(fMRI)자료를 뇌활동에 대한 반응 자료의 주요 형태로써 선택하였는데, 이fMRI자료는 높은 해상도 때문에 뇌과학 연구에서 선호되는 자료 형태이다. 뇌활동에 대한 생리학적 반응을 측정해서 자료로 사용한다는 전제하에서 뇌의 기능적 연결성을 분석하는 방법들을 고찰하였다. 여기서의 전제란 상태공간 및 측정 모형을 다룬다는것을 의미하는데, 여기서 상태공간 모형은 뇌신경역학을 표현한다고 가정한다. 뇌기능영상자료의 분석은 무엇을 측정하였느냐에 따라서 분석방법과 그 해석이 조금씩 달라진다. 실제 fMRI자료를 고차원 자기회귀모형을 적용해서 분석한 결과를 논문에 포함하였는데, 이 결과를 통해서 서로 다른 도형문제를 푸는데 서로 다른 뇌신경 역학관계가 요구된다는 것을 엿볼 수 있었다.
초록(외국어)
Functional neuro-connectivity is one of the main issues in brain science in the sense that it is closely related to neurodynamics in the brain. In the paper, we choose fMRI as a main form of response data to brain activity due to its high resolution. We review methods for analyzing functional neuro-connectivity assuming that measurements are made on physiological responses to neuron activation. This means that we deal with a state-space and measurement model, where the state-space model is assumed to represent neurodynamics. Analysis methods and their interpretation should vary subject to what was measured. We included analysis results of real fMRI data by applying a high-dimensional autoregressive model, which indicated that different neurodynamics were required for solving different types of geometric problems.

논문정보
  • - 주제 : 자연과학분야 > 통계학
  • - 발행기관 : 한국통계학회
  • - 간행물 : 응용통계연구, 29권 6호
  • - 발행년도 : 2016
  • - 페이지 : pp.1129-1145 ( 총 17 페이지 )
  • - UCI(KEPA) : I410-ECN-0102-2017-310-000579039
저널정보
  • - 주제 : 자연과학분야 > 통계학
  • - 성격 : 학술지
  • - 간기 : 격월
  • - 국내 등재 : KCI 등재
  • - 해외 등재 : -
  • - ISSN : 1225-066x
  • - 수록범위 : 1987–2019
  • - 수록 논문수 : 1835