글로버메뉴 바로가기 본문 바로가기 하단메뉴 바로가기

논문검색은 역시 페이퍼서치

> 인기논문 > 이슈논문

이슈논문 사회적으로 이슈가 되고 있는 주제와 관련된 논문을 추천해 드립니다.

이번주 핵심 키워드

빅데이터 분석을 위한 파티션 기반 시각화 알고리즘

홍준기 ( Jun-ki Hong )
4,500
초록보기
오늘날 빅데이터로부터 유의미한 결과를 도출하는 연구가 활발히 진행되고 있다. 본 논문에선 빅데이터의 데이터의 영역들을 파티션(partition)으로 설정하고 각 파티션들의 대표 값을 계산하여 변수들 사이의 상관관계를 분석 할 수 있는 파티션 기반 빅데이터 분석 알고리즘을 제안한다. 본 논문에선 파티션의 크기조절이 가능한 파티션 기반 빅데이터 분석 알고리즘의 파티션 크기 변화에 따른 시각화 결과를 비교분석하였다. 제안한 파티션 기반 빅데이터 분석 알고리즘을 검증하기 위해 의류 회사 ‘A’의 빅데이터를 분석하여 온도와 판매 가격 변화에 따른 상품의 판매량 변화를 분석하고 시각화하여 유의미한 결과를 얻을 수 있었다.

엔지니어링 서비스 지원을 위한 클라우드 기반 빅데이터 플랫폼 개발 연구

서동우 ( Seo Dongwoo ) , 김명일 ( Kim Myungil ) , 박상진 ( Park Sangjin ) , 김재성 ( Kim Jaesung ) , 정석찬 ( Jeong Seok Chan )
4,500
초록보기
본 연구는 엔지니어링 분야에서 생성되는 대용량의 빅데이터를 효율적으로 저장, 관리, 분석하는 클라우드 기반 빅데이터 플랫폼을 제안하고자 한다. 클라우드 기반 빅데이터 플랫폼은 HPC 클라우드 환경, 엔지니어링 빅데이터 분석 플랫폼, 데이터 수집 및 처리 모듈, 인공지능 기반 분석 라이브러리, 응용서비스로 구성된다. 이를 통해 데이터 분석에 대한 전문지식이 없는 엔지니어링 전문가가 IoT 빅데이터를 수집 및 분석함으로써 산업적으로 활용이 가능하다. 마지막으로 응용서비스에서는 빅데이터 플랫폼 적용 사례를 제시하기 위해 하수처리플랜트 데이터를 이용하여 서비스를 구현하였다.

빅데이터, 오픈데이터, 마이데이터의 비교 연구

박주석 ( Jooseok Park )
4,500
초록보기
지금은 데이터혁명 시대라고 한다. 데이터혁명 시대는 빅데이터로 시작하였고 오픈데이터를 거쳐서 마이데이터로 완성될 것이라 얘기한다. 본 논문에서는 빅데이터, 오픈데이터, 마이데이터를 비교 분석하고, 디지털자원으로서 마이데이터의 역할과 효과를 제시하고자 한다.

빅데이터 분석을 통한 천만 관객 영화 예측 모델

우종필 ( Jong-pil Yu ) , 이응환 ( Eung-hwan Lee )
4,500
초록보기
최근 5년(2013~2017년) 연속 영화 총 관객 수가 2억 명이 넘는 국내 영화 산업에서 천만 관객을 돌파한 한국 영화 간에는 어떤 요인이 영향을 미쳤는지 분석해 보았다. 일반적으로 천만 관객 돌파에 영향을 주는 요인으로는 스크린 수와 평점을 중요하게 보는 시각이 많았다. 본 연구에서는 스크린 수, 평점을 포함하고 추가적으로 4가지 요인을 설정하여 가설을 수립하고 빅데이터 분석을 통해 천만 관객 돌파 유무와의 상관관계를 분석했다. 이를 통해 천만 관객 돌파 예측 정확도는 91%, 누적 관객 수 예측 정확도는 99.4%까지 맞추는 유의미한 결과를 얻었다.

머신러닝을 이용한 빅데이터 도메인 자동 판별에 관한 연구

공성원 ( Kong Seongwon ) , 황덕열 ( Hwang Deokyoul )
4,500
초록보기
본 연구는 빅데이터 품질 진단의 핵심 요소인 도메인 기반 품질 진단을 위한 도메인 자동 판별에 관한 연구다. 빅데이터의 가치와 활용도의 증가와 4차 산업혁명의 대두로, 법률, 의료, 금융 등 IT와 융합된 다양한 분야에서 빅데이터를 활용하여 새로운 가치를 창출하려는 노력을 진행중이다. 하지만, 신뢰도가 낮은 데이터에 기반한 분석은 과정과 결과 모두에서 치명적인 문제를 발생하며, 분석 결과에 따른 판단 또한 신뢰하기 어려워 진다. 이처럼 신뢰도가 높은 데이터의 필요성 또한 증가하였지만, 데이터의 품질 확보에 대한 연구와 그에 대한 결과는 미비하다. 본 연구는 데이터 품질 향상을 위한 진단 평가의 핵심적 요소인 도메인 기반 품질 진단에서, 수작업으로 진행되었던 도메인 판별 작업을 머신러닝을 이용하여 자동화 함으로써, 작업시간을 단축하는 것을 목표로 한다. 데이터 베이스에 저장된, 도메인이 판별되어 있는 데이터의 특성에 관한 정보들을 추출하여 변수화하고, 이를 머신러닝을 이용하여 도메인 판별을 자동화 한다. 이를 빅데이터 품질 진단에 활용하고, 품질 향상에 기여하도록 한다.

빅데이터 분석을 통한 기온 변화에 따른 상품의 판매량 분석

홍준기 ( Jun-ki Hong )
4,500
초록보기
언제 어디서나 사용 가능한 스마트기기를 통한 온라인 쇼핑이 보편화되어 소비자들은 손쉽게 패션 관련상품을 구입할 수 있다. 따라서 소비자들은 패션 관련 상품을 구매할 때 날씨, 판매 가격과 같은 다양한 환경 변수에 반응하여 상품을 구매한다. 따라서 효율적인 재고 관리를 위해 판매된 상품들의 빅데이터를 활용하는 것이 패션 산업에서 매우 중요하다. 본 논문에서는 국내 패션 회사 'A'의 실제 상품 판매 빅데이터를 활용하여 제안한 빅데이터 분석 알고리즘을 통해 기온 변화에 따른 패션 상품의 판매량 변화를 분석하였다. 분석 결과에 따르면, 제안한 빅데이터 분석 알고리즘을 통해 예상할 수 있는 판매량 결과와 예상하지 못한 판매량 결과를 얻었다.

의료기관 빅데이터 품질관리의 필요성과 사례 분석

최혜린 ( Hye Rin Choi ) , 이승원 ( Seung Won Lee ) , 김영아 ( Youngah Kim ) , 이종호 ( Jong Ho Lee ) , 고홍 ( Hong Koh ) , 김현창 ( Hyeon Chang Kim )
4,500
초록보기
빅데이터의 활용은 사회 전 분야에서 중요한 역할을 하고 있으며, 특히 보건의료분야에서는 국민의 생명과 건강을 다루기 때문에 빅데이터의 역할이 더욱 중요하다. 하지만 의료 빅데이터의 품질관리에 대한 관심과 인식은 현저히 떨어지는 실정이다. 저 품질 의료 빅데이터는 국가적 손실과 국민의 건강 저해를 야기시키므로 의료 빅데이터의 품질관리가 필요하다. 이에 국내외 의료 빅데이터 품질관리 사례 및 가이드라인에 대하여 문헌 조사하여 국내 의료 빅데이터 품질관리에 대한 방향성을 제시하고자 한다. 또한, 국내 한 대형 의료기관의 의료 빅데이터 품질관리 사례로 Y의료원의 ‘빅데이터 품질관리 TFT’ 활동과 데이터 관련 업무종사자 대상설문조사 결과를 소개하고자 한다.

머신러닝을 이용한 빅데이터 품질진단 자동화에 관한 연구

이진형 ( Jin-hyoung Lee )
5,200
초록보기
본 연구에서는 빅데이터의 품질을 진단하는 방법을 자동화하는 방법을 제안하고 있다. 빅데이터의 품질진단을 자동화해야 하는 이유는 4차 산업혁명이 이슈화 되면서 과거보다 더 많은 볼륨의 데이터를 발생시키고 이 데이터들을 활용 하려는 요구가 증가하기 때문이다. 데이터는 급증하지만 데이터의 품질을 진단하기 위해 많은 시간이 소비된다면 데이터를 활용하기 위해 많은 시간이 걸리거나 데이터의 품질이 낮아질 수 있다. 그러면 이러한 낮은 품질의 데이터로부터 의사결정이나 예측을 한다면 그 결과 또한 잘못된 방향을 제시할 것이다. 이러한 문제를 해결하기 위해 많은 데이터를 신속하게 진단하고 개선할 수 있는 머신러닝 이용한 빅데이터 품질 향상을 위한 진단을 자동화 할 수 있는 모델을 개발하였다. 머신러닝을 이용하여 도메인 분류 작업을 자동화하여 도메인 분류 작업 시 발생할 수 있는 오류를 예방하고 작업 시간을 단축시켰다. 연구 결과를 토대로 데이터 변환의 중요성, 학습되지 않은 데이터에 대한 학습 시킬 수 있는 방안 모색, 도메인별 분류 모델을 개발에 대한 연구를 지속적으로 진행한다면 빅데이터를 활용하기 위한 데이터 품질향상에 기여할 수 있을 것이다.

빅데이터 품질 확장을 위한 서비스 품질 연구

박주석 ( Jooseok Park ) , 김승현 ( Seunghyun Kim ) , 류호철 ( Hocheol Ryu ) , 이준기 ( Zoonky Lee ) , 이장호 ( Jangho Lee ) , 이준용 ( Junyong Lee )
4,500
초록보기
데이터 품질에 대한 연구는 오랜 기간 동안 수행되어 왔다. 하지만 이러한 데이터 품질관리 연구는 구조적 데이터를 대상으로 하였다. 최근에 디지털혁명 또는 4차산업혁명이 일어나면서 빅데이터에 대한 품질관리가 중요해 지고 있다. 본 논문에서는 기존 논문을 분석하여 빅데이터 품질 유형을 분류하고 비교 분석하였다. 요약하면, 빅데이터 품질 유형은 빅데이터 값, 빅데이터 구조, 빅데이터 품질 프로세스, 빅데이터 가치사슬단계, 빅데이터 모형 성숙도 등으로 분류할 수 있다. 이러한 비교 연구를 바탕으로 본 논문에서는 새로운 기준을 제시하고자 한다.

빅데이터 품질 사례연구 : 법률 서비스 품질 체계

박주석 ( Jooseok Park ) , 김승현 ( Seunghyun Kim ) , 류호철 ( Hocheol Ryu )
4,500
초록보기
4차 산업혁명이 일어나면서 각 산업에서 새로운 개념이 탄생되었다. 각 산업의 새로운 개념은 빅데이터를 핵심 인프라로 가정하여 발전하고 있다. 따라서 빅데이터에 대한 품질관리가 점점 중요해 지고 있다. 본 논문에서는 빅데이터 품질 사례 연구를 통하여 빅데이터 품질관리 체계를 제시하고자 한다. 사례 연구를 위하여 새로운 정보기술을 활용한 법률서비스인 리걸테크 분야를 대상으로 하였다. 최근에 구현하고 있는 법무부 생활법률지식서비스를 위한 빅데이터 품질체계를 도출하였다.