글로버메뉴 바로가기 본문 바로가기 하단메뉴 바로가기

논문검색은 역시 페이퍼서치

한국미생물·생명공학회지검색

Microbiology and Biotechnology Letters


  • - 주제 : 자연과학분야 > 생물
  • - 성격 : 학술지
  • - 간기: 계간
  • - 국내 등재 : KCI 등재
  • - 해외 등재 : - / SCOPUS
  • - ISSN : 1598-642x
  • - 간행물명 변경 사항 : 산업미생물학회지(~2001)→한국미생물·생명공학회지(2002~)
논문제목
수록 범위 : 48권 2호 (2020)

유류오염토양 근권정화기술 동향 및 온실가스 배출 특성

서윤주 ( Yoonjoo Seo ) , 조경숙 ( Kyung-suk Cho )
5,400
초록보기
유류 오염 토양을 환경친화적으로 정화하는 방법으로 식물과 근권미생물 사이의 생태적 상승작용(synergism)에 기반을 둔 rhizoremediation이 큰 주목을 받고 있다. 전지구적 문제인 기후변화에 대응하기 위해서는 오염 토양을 정화하는 과정에서 온실가스 배출량을 최소화할 수 있는 기후변화대응 정화기술이 도입될 필요가 있다. 기후변화 대응 rhizoremediation 기술에서, 오염정화효율과 non-CO2 온실가스 배출량에 영향을 미치는 주요인자는 오염물질 특성 및 토양의 물리화학적 특성 뿐 아니라, 식물-미생물 상호작용, 미생물 활성, 그리고 첨가제 및 강화제 첨가 여부로 구분할 수 있다. 본 총설에서는 유류 오염토양을 정화하기 위한 rhizoremediation 기술 개발 동향을 정리하고, 기후변화 대응 rhizoremediation 기술 개발 방향에 대해 고찰하였다.
4,500
초록보기
The objective of the study was to assess the survival of microencapsulated Lactobacillus plantarum ATCC8014 produced using the emulsion technique in alginate gel combined with pectin and maltodextrin components. The microcapsules were then added to cupcake dough that was further baked at 200℃ for 12 min. The viability of L. plantarum was assessed during baking and the 10 days of storage at 4℃ as well as in simulated gastrointestinal conditions. In addition, yeast-mold and water activity were investigated. After baking, the samples with microencapsulated L. plantarum contained more than 5 log CFU/g, which was higher compared to the bacterial concentration of the control samples. The concentration of L. plantarum was more than 6 logs CFU/g after the end of the storage; therefore, the probiotic functioned as a biopreservative in the cake. The prebiotic component strengthened the microcapsules network and helped protect the viability of L. plantarum in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) media. The results show that the addition of L. plantarum microencapsules did not affect the sensory scores of the cupcake while ensuring the viability of the probiotic during baking and storing.
4,500
초록보기
Diarrhea is a major public health concern associated with pathogenic Escherichia coli infections. Foodborne pathogenic E. coli can lead to large diarrheal outbreaks and hence, there is a need to estimate the frequency of pathogenic E. coli load in the various types of meat available in markets. In the present study, we classified and characterized diarrheagenic E. coli isolates collected from 399 raw meat samples from retail sources in Korea. Shiga toxin-producing E. coli (STEC) were detected in 11 (9.7%) samples, including nine strains (8.0%) in beef and two strains (1.8%) in chicken. The frequency of the detected virulence markers were as follows: astA, 28.3%; escV,18.6%; eaeA,17.7%; ent, 7.0%; EHEC-hly, 4.4%; stx1, 3.5%; and stx2, 3.5%. We did not observe any typical EPEC, EIEC, or ETEC virulence determinants in any of the samples. The STEC serotype O26 was detected in one sample, but no other serogroups (O91, O103, O128, O157, O145, O111, and O121) were found. Further research is needed to better understand the virulence mechanism of STEC serotypes, their ecology, and prevalence in animals, food, and the environment. These results will help improve risk assessment and predict the sources of food poisoning outbreaks.

Antioxidant Activity, Macamide B Content and Muscle Cell Protection of Maca (Lepidium meyenii) Extracted Using Ultrasonification-Assisted Extraction

( Enkhbolor Buyanbadrakh ) , ( Hyeong-suk Hong ) , ( Kang-woo Lee ) , ( Wen Yan Huang ) , ( Jun-hyun Oh )
4,500
초록보기
This study aims to evaluate the efficacy of the Ultrasonication-Assisted (UA) extraction on the functionality of the herbaceous biennial plant maca (Lepidium meyenii). The specific objectives include comparison of the antioxidant activities among various maca extracts, determination of the macamide B content of the extracts, and in vitro evaluation of maca on cell viability and creatine kinase (CK) activity. The antioxidant activities of the water, ethanol, and UA extracts were compared by determining the total phenolic and flavonoid contents, the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, and the ferric reducing antioxidant power (FRAP) of the extracts. The macamide B content of maca extracts were analyzed by HPLC. The effects of the extracts on muscle cell viability and creatine kinase activity were also determined using C2C12 myoblasts. UA extraction significantly increased the total phenolic content (2.90 GAE μg/mg, p < 0.05), without affecting the flavonoid content. DPPH radical scavenging activity did not exhibit any statistical difference among the extracts. The ethanol and UA extracts exhibited significantly higher FRAP than the water extract (p < 0.05). The macamide B content of ethanol and UA extracts were 0.087 and 0.083 μg/mg, respectively. The water and UA extracts exhibited higher C2C12 muscle cell viability than the ethanol extract, and both extracts resulted in a significantly lower CK level than the H2O2-treated control group. This research suggests that the maca extract can protect muscle cells and serve as an antifatigue agent under oxidative stress conditions.

Characterization of Yeast and Bacterial Type Strains with Food and Agricultural Applications by MALDI-TOF Mass Spectrometry Biotyping

( Piyanun Harnpicharnchai ) , ( Janthima Jaresitthikunchai ) , ( Mintra Seesang ) , ( Sasitorn Jindamorakot ) , ( Sutipa Tanapongpipat ) , ( And Supawadee Ingsriswang )
4,500
초록보기
Various microorganisms play important roles in food fermentation, food spoilage, and agriculture. In this study, the biotype of 54 yeast and bacterial strains having high potential for utilization in food and agriculture, including Candida spp., Lactobacillus spp., and Acetobacter spp., were characterized by matrixassisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS). This characterization using a fast and robust method provides much-needed information on the selected microorganisms and will facilitate effective usage of these strains in various applications. Importantly, the unique protein profile of each microbial species obtained from this study was used to create a database of fingerprints from these species. The database was validated using microbial strains of the same species by comparing the mass spectra with the created database through pattern matching. The created reference database provides crucial information and is useful for further utilization of a large number of valuable microorganisms relevant to food and agriculture.
4,500
초록보기
Eucalyptus oil is a rich source of bioactive compounds with a variety of biological activities and is widely used in traditional medicine. Eucalyptus citriodora is cultivated for the production of essential oils. However, the mode of antibacterial action of essential oils from E. citriodora is not well-known. This study aimed to determine the chemical components, microbial inhibitory effect, and mechanism of action of the essential oil from E. citriodora. The oil was extracted from E. citriodora leaves by hydro-distillation and the chemical components were analyzed using gas chromatography-mass spectrometry. The antibacterial activities of eucalyptus oil against gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus intermedius) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were screened by disc diffusion method and quantitative analysis was conducted by the microdilution method. The mechanism of action of the extracted essential oil was observed using SEM and analyzed by SDS-PAGE. The major components of E. citriodora oil were citronellal (60.55 ± 0.07%), followed by dl-isopulegol (10.57 ± 0.02%) and citronellol (9.04 ± 0.03%). The antibacterial screening indicated that E. citriodora oil exhibited prominent activity against all tested strains. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against B. subtilis were 0.5% and 1.0%, respectively. The MIC and MBC concentrations against S. aureus, S. intermedius, E. coli, and P. aeruginosa were 1% and 2%, respectively. As observed by SEM, the antibacterial mechanism of E. citriodora oil involved cell wall damage; SDS-PAGE revealed decrease in protein bands compared to untreated bacteria. Thus, E. citriodora oil showed significant antimicrobial properties and caused cellular damage.
4,500
초록보기
Paenibacillus woosongensis의 xylanase 유전자를 클로닝하고 그 염기서열을 결정하였다. Xylanase 유전자는 xyn10A로 명명되었으며, 481 아미노잔기로 구성된 단백질을 코드하는 1,446개 뉴클레오티드로 구성되었다. 추론된 아미노산배열에 따르면 Xyn10A는 glycosyl hydrolase family 10 xylanase와 상동성이 높은 활성영역과 카르복실 말단에 탄수화물을 결합하는 것으로 추정되는 영역이 포함된 다영역 효소로 확인되었다. DEAE-Sepharose와 Phenyl-Separose 컬럼 크로마토그래피 과정을 통해 P. woosongensis xyn10A 유전자를 함유한 재조합 대장균의 균체 파쇄상등액으로부터 Xyn10A를 정제하였다. 정제된 Xyn10A의 아미노 말단 배열이 GIANGSKF로 결정되었으며 이는 SignalP5.0 server로 예측된 signal peptide의 다음 아미노산 배열과 정확하게 일치하였다. 정제된 Xyn10A는 33 kDa 크기의 절단된 단백질이며 균체내 분해에 의해 카르복시 말단에서 CBM이 제거된 것으로 판단된다. 정제된 효소는 최적 pH와 온도가 6.0과 55-60℃이며 oat spelt xylan에 대한 반응 동력학적 계수 Vmax와 Km이 298.8 U/mg과 2.47 mg/ml로 각각 나타났다. 효소는 birchwood xylan이나 oat spelt xylan보다 arabinoxylan에 대한 활성이 높았으며 para-nitrophenyl-β-xylopyranoside에 대해 낮은 활성을 보였다. Xyn10A의 활성은 Cu2+, Mn2+과 SDS에 의해서 크게 저해되었으며 K+, Ni2+과 Ca2+에 의해는 상당하게 증진되었다. 또한 이 효소는 xylobiose 보다 중합도가 큰 자일로올리고당을 분해하였으며, 자일로올리고당의 최종 가수분해 산물은 xylose와 xylobiose로 확인되었다.

Lipase-producing Filamentous Fungi from Non-dairy Creamer Industrial Waste

( Desty Triyaswati ) , ( Miftahul Ilmi )
5,200
초록보기
Lipase-producing fungi have been isolated from environments containing lipids. The non-dairy creamer industrial waste has a high amount of lipids so it is a potential source for the isolation of lipase-producing fungi. However, the study of fungi that secrete lipase from this industrial waste has not been reported. The purpose of this study was to obtain lipase-producing filamentous fungi from non-dairy creamer industrial waste. Mineral salt and potato dextrose agar were used as media for the isolation process. The qualitative screening was conducted using phenol red agar medium and the quantitative screening using broth medium containing glucose and olive oil. Isolates producing the highest amounts of lipase were identified with molecular methods. We found that 5 out of 19 isolated filamentous fungi are lipase producers. Further analysis showed that isolate Ms.11 produced the highest amount of lipase compared to others. Based on ITS sequence Ms.11 was identified as Aspergillus aculeatus. The lipase activity in medium containing 1% glucose + 1% olive oil at pH 7.0 and 30℃ after 96 and 120 h of incubation was 5.13 ± 0.30 U/ml and 5.22 ± 0.59 U/ml, respectively. The optimum lipase activity was found at pH 7.0, 30℃ and using methanol or ethanol in the reaction tube. Lipase was more stable at 20-30℃ and maintained 85% of its activity. It was concluded that isolate Ms.11 is a potential source of lipase that catalyzes transesterification reactions. Further studies are required to optimize lipase production to make the strain suitable for industry purposes.

시네라리아 꽃으로부터 에탄올 생산성 및 내열성이 우수한 효모 Hanseniaspora opuntiae 균주 분리

윤정아 ( Jeong-ah Yoon ) , 도영은 ( Young-eun Do ) , 박은희 ( Eun-hee Park ) , 배영우 ( Young-woo Bae ) , 김명동 ( Myoung-dong Kim )
4,500
초록보기
다양한 꽃으로부터 분리된 160점의 효모 균주 중 시네라리아 꽃에서 분리된 MBY/L6793은 0.48 ± 0.00 g ethanol/g glucose 으로 분리된 균주 중 가장 우수한 에탄올 생산 수율을 나타냈으며, 과꽃으로부터 분리된 MBY/L6986 균주의 약 1.5배 수준이었다. MBY/L6793 균주의 18s rRNA 유전자의 염기서열을 분석한 결과 Hanseniaspora opuntiae로 동정되었으며, 분석된 염기서열은 GenBank (MN859968)에 등록하였다. 40℃에서 배양하였을 때, H. opuntiae MBY/L6793 균주는 20 g의 포도당으로부터 3.82 ± 0.98 g의 에탄올을 생산하였으며, 60g의 포도당으로부터 10.05 ± 0.06 g의 에탄올을 생산하여 대조구 균주인 H. opuntiae KCCM50747 균주의 약 2.45배와 5.74배 수준이었다. H. opuntiae MBY/L6793 균주는 한국생물자원센터에 KCTC37025로 기탁하였다.

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

( Laura Iztacihuatl Serrano Angel ) , ( Daniel Segura ) , ( Jeiry Toribio Jiménez ) , ( Miguel Ángel Rodríguez Barrera ) , ( Carlos Ortuño Pineda ) , ( Yanet Romero Ramírez )
4,500
초록보기
The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.
1 2 >