글로버메뉴 바로가기 본문 바로가기 하단메뉴 바로가기

논문검색은 역시 페이퍼서치

> 한국보건정보통계학회 > 보건정보통계학회지 > 45권 4호

변수 중요도를 이용한 설명 가능한 인공지능 기법의 시각화에 대한 고찰과 보건정보 자료에의 응용

Visualization of Explainable Artificial Intelligence Techniques Using Variable Importance with Its Applications to Health Information Data

정혜린 ( Hyerin Jeong ) , 박정훈 ( Junghoon Park ) , 이영섭 ( Yungseop Lee ) , 임창원 ( Changwon Lim )

- 발행기관 : 한국보건정보통계학회

- 발행년도 : 2020

- 간행물 : 보건정보통계학회지, 45권 4호

- 페이지 : pp.317-334 ( 총 18 페이지 )


학술발표대회집, 워크숍 자료집 중 1,2 페이지 논문은 ‘요약’만 제공되는 경우가 있으니,

구매 전에 간행물명, 페이지 수 확인 부탁 드립니다.

5,800
논문제목
초록(외국어)
Objectives: Deep learning techniques have been actively used in the medical field where precise diagnosis and results are very important. Deep neural network-based models utilizing big data from medical records are supporting medical opinions and are revolutionizing the medical industry. In addition, the convolutional neural network model shows excellent performance in analyzing image data and are used for image classification and X-ray/CT image reconstruction. Methods: In this paper, we conducted a visualization study using structured and unstructured data in the medical field. Results: In order to determine input variables affecting mortality and to evaluate their importance, a total of five techniques, namely, the augmented neural network model with multi-task learning, random forest, extra tree, gradient boosting and xgboost are applied to the intensive care unit data. Variable importance is calculated for each technique, and these indicators are all converted to ratios in consideration of the differences considering the patient group as a stratification variable. The converted values are shown in three graphs, a lollipop graph, a bubble chart graph, and a heat map graph. Through the visualization, it was easy to see which variables were relatively important for each technique and to what extent. InceptionResnetV2 was used as a classification model for skin cancer image data, and LIME and Grad-CAM were applied to the model to easily identify the characteristics of each cancer. Conclusions: Through this study, we apply several explainable artificial intelligence techniques to medical data to enhance understanding of the results of analysis and to help identify and visualize important input variables and features.

논문정보
  • - 주제 : 의약학분야 > 예방의학및보건학
  • - 발행기관 : 한국보건정보통계학회
  • - 간행물 : 보건정보통계학회지, 45권 4호
  • - 발행년도 : 2020
  • - 페이지 : pp.317-334 ( 총 18 페이지 )
  • - UCI(KEPA) : I410-ECN-0102-2021-000-001218604
저널정보
  • - 주제 : 의약학분야 > 예방의학및보건학
  • - 성격 : 학술지
  • - 간기 : 계간
  • - 국내 등재 : KCI 등재
  • - 해외 등재 : -
  • - ISSN : 2465-8014
  • - 수록범위 : 1976–2021
  • - 수록 논문수 : 736